

			Fact	or (conto	1.)			
TABLE 7. Parabolic	5 Stiffness and D Soil Profile	amping Param	eters of Horizont	al Response f	or Piles with L/r	₀ > 25 for Ho	mogeneous Soil	Profile and L	/r ₀ > 30
		Stiffness Parameters				Damping Parameters			
	$E_{pile}/$								
v (1)	G _{soil} (2)	(f_{ϕ_1}) (3)	$\begin{array}{c}f_{(x\phi_1)}\\(4)\end{array}$	(f*) (5)	$(f_{x_1}^p)$	(f _{\$\phi2}) (7)	$f_{(x\phi_2)}$ (8)	$(f_{x_2}^*)$ (9)	$(f_{x_3}^p)$ (10)
			Н	omogeneous	Soil Profile				
0.25	10,000	0.2135	-0.0217	0.0042	0.0021	0.1577	-0.0333	0.0107	0.005
	2,500	0.2998	-0.0429	0.0119	0.0061	0.2152	-0.0646	0.0297	0.015
	1,000	0.3741	-0.0668	0.0236	0.0123	0.2598	-0.0985	0.0579	0.030
	500	0.4411	-0.0929	0.0395	0.0210	0.2953	-0.1337	0.0953	0.051
0.40	250	0.5186	-0.1281	0.0659	0.0358	0.3299	-0.1786	0.1556	0.086
0.40	10,000	0.2207	-0.0232	0.0047	0.0024	0.1634	-0.0358	0.0119	0.006
	2,500	0.3097	-0.0459	0.0132	0.0068	0.2224	-0.0692	0.0329	0.017
	500	0.3800	-0.0714	0.0261	0.0136	0.2677	-0.1052	0.0641	0.033
	250	0.5336	-0.1365	0.0436	0.0231	0.3034	-0.1425	0.1054	0.057
	250	0.5550	-0.1305	Deschalia Ca	0.0394	0.3377	-0.1896	0.1717	0.095
0.25	10.000	0.1800	0.01.11	Farabolic So	Profile				
0.25	2 500	0.1800	-0.0144	0.0019	0.0008	0.1450	-0.0252	0.0060	0.002
	2,500	0.2432	-0.0267	0.0047	0.0020	0.2025	-0.0484	0.0159	0.007
	500	0.3000	-0.0543	0.0086	0.0037	0.2499	-0.0737	0.0303	0.014
	250	0.4049	-0.0734	0.0215	0.0039	0.2910	-0.1008	0.0491	0.024
0.40	10,000	0.1857	-0.0153	0.0020	0.0009	0.5301	-0.1370	0.0793	0.039
	2,500	0.2529	-0.0284	0.0051	0.0022	0.2101	-0.0271	0.006/	0.003
	1,000	0.3094	-0.0426	0.0094	0.0041	0.2589	-0.0790	0.0336	0.008
	500	0.3596	-0.0577	0.0149	0.0065	0.3009	-0.1079	0.0544	0.016
	250	0.4170	-0.0780	0.0236	0.0103	0.3468	-0.1461	0.0944	0.020

JADI's ANALYSIS, Cont.

Step 4. The reduction factors obtained from step 3 were plotted versus shear strain at resonance without corrected G and 'c'. Two quadratic equations were developed to determine the shear modulus reduction factors (λ G) versus shear strain, (γ) and the radiation damping reduction factor (λ C) versus shear strain (γ).

Step 5. For all the pile tests considered in this study, the empirical equations determined in step 4 were used to calculate shear modulus and radiation damping reduction factors. Predicted responses before and after applying the proposed reduction factors were then compared to the measured response.

Step 6. To validate this approach, the proposed equations were used to calculate shear modulus and radiation damping reduction factors for different sets of field pile tests. The new predicted response was then compared to the measured response, both for Gle (1981) tests and two other cases.

71

<text><text><equation-block><text><text>

36

DESIGN

The design of pile foundations in liquefied soils requires a reliable method of calculating the effects of earthquake shaking and post liquefaction displacements on pile Foundations (Finn 2004)

107

	Table 2.	Reduction coefficients for soil	constants due to liquefac	tion (JRA 1996)	
	Dan an af F	Depth from the Present Ground Surface x (m)	Dynamic Shear Stren	gth Ratio R	
	Kange of FL		$R \leq 0.3$	0.3 < Ra	
	E < 10	$0 \leq x \leq 10$	0	1/3	
	$F_L \ge 1/3$	10 < x ≦ 20	1/3	1/3	
	$1/3 < F_r \le 2/3$	$0 \leqq x \leqq 10$	1/3	2/3	
		10 < x ≦ 20	2/3	2/3	
		$0 \leq x \leq 10$	1/3	1	
	$2/3 \leq F_L \ge 1$	10 < x ≦ 20	1	1	
$F_L - R = c$	FOS against L $c_w R_L$ $c_w = 1$	iquefacti on or 1–0.2 depending	upon the type I	or type II motions	
$F_L - R = c$	FOS against L $c_w R_L$ $c_w = 1$	iquefacti on or 1–0.2 depending (See code	upon the type I o	or type II motions	

THANK YOU

NOT AN EASY PROBLEM

PLEASE ASK ONLY SIMPLE QUESTIONS

119

